Development of a Human Dihydroorotate Dehydrogenase (hDHODH) Pharma-Similarity Index Approach with Scaffold-Hopping Strategy for the Design of Novel Potential Inhibitors
نویسندگان
چکیده
Human dihydroorotate dehydrogenase (hDHODH) is a class-2 dihydroorotate dehydrogenase. Because it is extensively used by proliferating cells, its inhibition in autoimmune and inflammatory diseases, cancers, and multiple sclerosis is of substantial clinical importance. In this study, we had two aims. The first was to develop an hDHODH pharma-similarity index approach (PhSIA) using integrated molecular dynamics calculations, pharmacophore hypothesis, and comparative molecular similarity index analysis (CoMSIA) contour information techniques. The approach, for the discovery and design of novel inhibitors, was based on 25 diverse known hDHODH inhibitors. Three statistical methods were used to verify the performance of hDHODH PhSIA. Fischer's cross-validation test provided a 98% confidence level and the goodness of hit (GH) test score was 0.61. The q(2), r(2), and predictive r(2) values were 0.55, 0.97, and 0.92, respectively, for a partial least squares validation method. In our approach, each diverse inhibitor structure could easily be aligned with contour information, and common substructures were unnecessary. For our second aim, we used the proposed approach to design 13 novel hDHODH inhibitors using a scaffold-hopping strategy. Chemical features of the approach were divided into two groups, and the Vitas-M Laboratory fragment was used to create de novo inhibitors. This approach provides a useful tool for the discovery and design of potential inhibitors of hDHODH, and does not require docking analysis; thus, our method can assist medicinal chemists in their efforts to identify novel inhibitors.
منابع مشابه
Rational Design of Benzylidenehydrazinyl-Substituted Thiazole Derivatives as Potent Inhibitors of Human Dihydroorotate Dehydrogenase with in Vivo Anti-arthritic Activity
Human dihydroorotate dehydrogenase (hDHODH) is an attractive therapeutic target for the treatment of rheumatoid arthritis, transplant rejection and other autoimmune diseases. Based on the X-ray structure of hDHODH in complex with lead compound 7, a series of benzylidenehydrazinyl-substituted thiazole derivatives as potent inhibitors of hDHODH were designed and synthesized, of which 19 and 30 we...
متن کاملDesign, synthesis and inhibitory activity against human dihydroorotate dehydrogenase (hDHODH) of 1,3-benzoazole derivatives bearing amide units.
A series of 1,3-benzoazole derivatives possessing amide moieties were designed, synthesized and evaluated as inhibitors against human dihydroorotate dehydrogenase (hDHODH). Compounds A11, A14 and A26 exhibited good to excellent activities against hDHODH at the concentration of 10μM. In particular, compound A14 displayed an IC50 value of 0.178μM with 2-fold preference over A771726. The result im...
متن کاملDesign and Fabrication of a Novel Transplant Combined with Human Bone Marrow Mesenchymal Stem Cells and Platelet-rich Fibrin: New Horizons for Periodontal Tissue Regeneration after Dental Trauma
Avulsed teeth that are replanted dried are more prone to loss. Recent tissue engineering studies focus onfabrication of various cell delivery systems to improve the overall prognosis of such teeth. To evaluate this newcell transplant method, we initially aimed at designing of PRF scaffold and determining BMMSCs viabilityand function on the fabricated scaffold. To test this concept in-vitro, hum...
متن کاملDiscovery of new human DHODH inhibitors using a Structure-Based and a Ligand-Based Pharmacophore approaches
Dihydroorotate Dehydrogenase (DHODH) is a mitochondrial protein involved in de novo pyrimidine biosynthesis, catalyzing the ubiquinone-mediated oxidation of dihydroorotate (DHO) to orotate. DHODH is considered to be a validated target for the development of immune-modulating agents. In this work two different approaches were used to create a pharmacophore model, which was subsequently used in a...
متن کاملDesign and Fabrication of a Novel Transplant Combined with Human Bone Marrow Mesenchymal Stem Cells and Platelet-rich Fibrin: New Horizons for Periodontal Tissue Regeneration after Dental Trauma
Avulsed teeth that are replanted dried are more prone to loss. Recent tissue engineering studies focus onfabrication of various cell delivery systems to improve the overall prognosis of such teeth. To evaluate this newcell transplant method, we initially aimed at designing of PRF scaffold and determining BMMSCs viabilityand function on the fabricated scaffold. To test this concept in-vitro, hum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014